Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3307, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658525

RESUMEN

Giant viruses (Nucleocytoviricota) are significant lethality agents of various eukaryotic hosts. Although metagenomics indicates their ubiquitous distribution, available giant virus isolates are restricted to a very small number of protist and algal hosts. Here we report on the first viral isolate that replicates in the amoeboflagellate Naegleria. This genus comprises the notorious human pathogen Naegleria fowleri, the causative agent of the rare but fatal primary amoebic meningoencephalitis. We have elucidated the structure and infection cycle of this giant virus, Catovirus naegleriensis (a.k.a. Naegleriavirus, NiV), and show its unique adaptations to its Naegleria host using fluorescence in situ hybridization, electron microscopy, genomics, and proteomics. Naegleriavirus is only the fourth isolate of the highly diverse subfamily Klosneuvirinae, and like its relatives the NiV genome contains a large number of translation genes, but lacks transfer RNAs (tRNAs). NiV has acquired genes from its Naegleria host, which code for heat shock proteins and apoptosis inhibiting factors, presumably for host interactions. Notably, NiV infection was lethal to all Naegleria species tested, including the human pathogen N. fowleri. This study expands our experimental framework for investigating giant viruses and may help to better understand the basic biology of the human pathogen N. fowleri.


Asunto(s)
Genoma Viral , Virus Gigantes , Naegleria , Genoma Viral/genética , Virus Gigantes/genética , Virus Gigantes/clasificación , Virus Gigantes/ultraestructura , Virus Gigantes/aislamiento & purificación , Virus Gigantes/fisiología , Naegleria/genética , Naegleria/virología , Naegleria fowleri/genética , Naegleria fowleri/aislamiento & purificación , Filogenia , Humanos
2.
Viruses ; 14(2)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215784

RESUMEN

Almost two decades after the isolation of the first amoebal giant viruses, indubitably the discovery of these entities has deeply affected the current scientific knowledge on the virosphere. Much has been uncovered since then: viruses can now acknowledge complex genomes and huge particle sizes, integrating remarkable evolutionary relationships that date as early as the emergence of life on the planet. This year, a decade has passed since the first studies on giant viruses in the Brazilian territory, and since then biomes of rare beauty and biodiversity (Amazon, Atlantic forest, Pantanal wetlands, Cerrado savannas) have been explored in the search for giant viruses. From those unique biomes, novel viral entities were found, revealing never before seen genomes and virion structures. To celebrate this, here we bring together the context, inspirations, and the major contributions of independent Brazilian research groups to summarize the accumulated knowledge about the diversity and the exceptionality of some of the giant viruses found in Brazil.


Asunto(s)
Amoeba/virología , Virus Gigantes/genética , Virus Gigantes/aislamiento & purificación , Virología/historia , Biodiversidad , Brasil , Ecosistema , Genoma Viral , Virus Gigantes/clasificación , Virus Gigantes/ultraestructura , Historia del Siglo XXI , Filogenia
3.
Microscopy (Oxf) ; 70(6): 477-486, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34490462

RESUMEN

High-resolution study of the giant viruses presents one of the latest challenges in cryo-electron microscopy (EM) of viruses. Too small for light microscopy but too large for easy study at high resolution by EM, they range in size from ∼0.2 to 2 µm from high-symmetry icosahedral viruses, such as Paramecium burseria Chlorella virus 1, to asymmetric forms like Tupanvirus or Pithovirus. To attain high resolution, two strategies exist to study these large viruses by cryo-EM: first, increasing the acceleration voltage of the electron microscope to improve sample penetration and overcome the limitations imposed by electro-optical physics at lower voltages, and, second, the method of 'block-based reconstruction' pioneered by Michael G. Rossmann and his collaborators, which resolves the latter limitation through an elegant leveraging of high symmetry but cannot overcome sample penetration limitations. In addition, more recent advances in both computational capacity and image processing also yield assistance in studying the giant viruses. Especially, the inclusion of Ewald sphere correction can provide large improvements in attainable resolutions for 300 kV electron microscopes. Despite this, the study of giant viruses remains a significant challenge.


Asunto(s)
Chlorella , Microscopía por Crioelectrón , Virus Gigantes , Chlorella/virología , Virus Gigantes/aislamiento & purificación
5.
Sci Rep ; 11(1): 5025, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658544

RESUMEN

Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280-660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6-12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle.


Asunto(s)
Acanthamoeba/virología , Virus ADN/ultraestructura , ADN Viral/genética , Genoma Viral , Virus Gigantes/ultraestructura , Virión/ultraestructura , Acanthamoeba/ultraestructura , Biomasa , Virus ADN/genética , Virus ADN/crecimiento & desarrollo , Virus ADN/aislamiento & purificación , ADN Viral/biosíntesis , Virus Gigantes/genética , Virus Gigantes/crecimiento & desarrollo , Virus Gigantes/aislamiento & purificación , Interacciones Huésped-Patógeno/genética , Fagosomas/ultraestructura , Fagosomas/virología , Microbiología del Suelo , Termogravimetría , Vacuolas/ultraestructura , Vacuolas/virología , Virión/genética , Virión/crecimiento & desarrollo , Replicación Viral , Microtomografía por Rayos X
6.
Viruses ; 13(2)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498382

RESUMEN

Kaumoebavirus infects the amoeba Vermamoeba vermiformis and has recently been described as a distant relative of the African swine fever virus. To characterize the diversity and evolution of this novel viral genus, we report here on the isolation and genome sequencing of a second strain of Kaumoebavirus, namely LCC10. Detailed analysis of the sequencing data suggested that its 362-Kb genome is linear with covalently closed hairpin termini, so that DNA forms a single continuous polynucleotide chain. Comparative genomic analysis indicated that although the two sequenced Kaumoebavirus strains share extensive gene collinearity, 180 predicted genes were either gained or lost in only one genome. As already observed in another distant relative, i.e., Faustovirus, which infects the same host, the center and extremities of the Kaumoebavirus genome exhibited a higher rate of sequence divergence and the major capsid protein gene was colonized by type-I introns. A possible role of the Vermamoeba host in the genesis of these evolutionary traits is hypothesized. The Kaumoebavirus genome exhibited a significant gene strand bias over the two-third of genome length, a feature not seen in the other members of the "extended Asfarviridae" clade. We suggest that this gene strand bias was induced by a putative single origin of DNA replication located near the genome extremity that imparted a selective force favoring the genes positioned on the leading strand.


Asunto(s)
Asfarviridae/genética , Genoma Viral , Virus Gigantes/genética , Virus no Clasificados/genética , Asfarviridae/clasificación , Proteínas de la Cápside/genética , Replicación del ADN , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/aislamiento & purificación , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Evolución Molecular , Genes Virales , Virus Gigantes/clasificación , Virus Gigantes/aislamiento & purificación , Virus Gigantes/ultraestructura , Lobosea/virología , Filogenia , Aguas del Alcantarillado/virología , Proteínas Virales/genética , Virus no Clasificados/aislamiento & purificación , Virus no Clasificados/ultraestructura
7.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31996429

RESUMEN

Microbes trapped in permanently frozen paleosoils (permafrost) are the focus of increasing research in the context of global warming. Our previous investigations led to the discovery and reactivation of two Acanthamoeba-infecting giant viruses, Mollivirus sibericum and Pithovirus sibericum, from a 30,000-year old permafrost layer. While several modern pithovirus strains have since been isolated, no contemporary mollivirus relative was found. We now describe Mollivirus kamchatka, a close relative to M. sibericum, isolated from surface soil sampled on the bank of the Kronotsky River in Kamchatka, Russian Federation. This discovery confirms that molliviruses have not gone extinct and are at least present in a distant subarctic continental location. This modern isolate exhibits a nucleocytoplasmic replication cycle identical to that of M. sibericum Its spherical particle (0.6 µm in diameter) encloses a 648-kb GC-rich double-stranded DNA genome coding for 480 proteins, of which 61% are unique to these two molliviruses. The 461 homologous proteins are highly conserved (92% identical residues, on average), despite the presumed stasis of M. sibericum for the last 30,000 years. Selection pressure analyses show that most of these proteins contribute to virus fitness. The comparison of these first two molliviruses clarify their evolutionary relationship with the pandoraviruses, supporting their provisional classification in a distinct family, the Molliviridae, pending the eventual discovery of intermediary missing links better demonstrating their common ancestry.IMPORTANCE Virology has long been viewed through the prism of human, cattle, or plant diseases, leading to a largely incomplete picture of the viral world. The serendipitous discovery of the first giant virus visible under a light microscope (i.e., >0.3 µm in diameter), mimivirus, opened a new era of environmental virology, now incorporating protozoan-infecting viruses. Planet-wide isolation studies and metagenome analyses have shown the presence of giant viruses in most terrestrial and aquatic environments, including upper Pleistocene frozen soils. Those systematic surveys have led authors to propose several new distinct families, including the Mimiviridae, Marseilleviridae, Faustoviridae, Pandoraviridae, and Pithoviridae We now propose to introduce one additional family, the Molliviridae, following the description of M. kamchatka, the first modern relative of M. sibericum, previously isolated from 30,000-year-old arctic permafrost.


Asunto(s)
Virus Gigantes/clasificación , Virus Gigantes/genética , Virus Gigantes/aislamiento & purificación , Filogenia , Acanthamoeba/virología , Virus ADN/clasificación , Virus ADN/genética , Genoma Viral , Genómica , Virus Gigantes/ultraestructura , Mimiviridae/clasificación , Mimiviridae/genética , Federación de Rusia , Microbiología del Suelo , Virión/genética , Virión/ultraestructura , Virus no Clasificados/clasificación , Virus no Clasificados/genética , Virus no Clasificados/aislamiento & purificación
8.
J Vis Exp ; (152)2019 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-31710032

RESUMEN

During the amoeba co-culture process, more than one virus may be isolated in a single well. We previously solved this issue by end point dilution and/or fluorescence activated cell sorting (FACS) applied to the viral population. However, when the viruses in the mixture have similar morphologic properties and one of the viruses multiplies slowly, the presence of two viruses is discovered at the stage of genome assembly and the viruses cannot be separated for further characterization. To solve this problem, we developed a single cell micro-aspiration procedure that allows for separation and cloning of highly similar viruses. In the present work, we present how this alternative strategy allowed us to separate the small viral subpopulations of Clandestinovirus ST1 and Usurpativirus LCD7, giant viruses that grow slowly and do not lead to amoebal lysis compared to the lytic and fast-growing Faustovirus. Purity control was assessed by specific gene amplification and viruses were produced for further characterization.


Asunto(s)
Amoeba/virología , Citometría de Flujo/métodos , Virus Gigantes/aislamiento & purificación , Análisis de la Célula Individual/métodos , Succión
9.
Arch Virol ; 164(11): 2819-2822, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31482204

RESUMEN

A recent study by Ghosh et al. compared the gut microbiomes of 20 preschool children from India and found an association between the gut microbiome and the nutritional status of the child. Here, we explored these metagenomes for the presence of genomic signatures of prokaryotic and eukaryotic viruses. Several of the viral signatures found in all 20 metagenomes belonged to giant viruses (GVs). In addition, we found hits for bacteriophages to several major human pathogens, including Shigella, Salmonella, Escherichia, and Enterobacter. Concurrently, we also detected several antibiotic resistance genes (ARGs) in the metagenomes. All of the ARGs detected in this study (beta-lactam, macrolide, metronidazole, and tetracycline) are associated with mobile genetic elements (MGEs) and have been reported to cause high levels of resistance to their respective antibiotics. Despite recent reports of giant viruses and their genomic signatures in gut microbiota, their role in human physiology remains poorly understood. The effect of cooccurrence of ARGs and GVs in the gut needs further investigation.


Asunto(s)
Bacteriófagos/genética , Microbioma Gastrointestinal/genética , Genoma Viral/genética , Virus Gigantes/genética , Metagenoma/genética , Preescolar , Farmacorresistencia Microbiana/genética , Enterobacter/genética , Escherichia/virología , Virus Gigantes/aislamiento & purificación , Humanos , India , Secuencias Repetitivas Esparcidas/genética , Salmonella/virología , Shigella/virología
10.
Viruses ; 11(8)2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398856

RESUMEN

The last decade has been marked by two eminent discoveries that have changed our perception of the virology field: The discovery of giant viruses and a distinct new class of viral agents that parasitize their viral factories, the virophages. Coculture and metagenomics have actively contributed to the expansion of the virophage family by isolating dozens of new members. This increase in the body of data on virophage not only revealed the diversity of the virophage group, but also the relevant ecological impact of these small viruses and their potential role in the dynamics of the microbial network. In addition, the isolation of virophages has led us to discover previously unknown features displayed by their host viruses and cells. In this review, we present an update of all the knowledge on the isolation, biology, genomics, and morphological features of the virophages, a decade after the discovery of their first member, the Sputnik virophage. We discuss their parasitic lifestyle as bona fide viruses of the giant virus factories, genetic parasites of their genomes, and then their role as a key component or target for some host defense mechanisms during the tripartite virophage-giant virus-host cell interaction. We also present the latest advances regarding their origin, classification, and definition that have been widely discussed.


Asunto(s)
Virus Gigantes/fisiología , Virófagos/fisiología , Animales , Evolución Biológica , Genoma Viral , Genómica/métodos , Virus Gigantes/aislamiento & purificación , Virus Gigantes/ultraestructura , Historia del Siglo XXI , Interacciones Huésped-Patógeno , Humanos , Secuencias Repetitivas Esparcidas , Estadios del Ciclo de Vida , Metagenómica/métodos , Investigación/historia , Virología/historia , Virófagos/clasificación , Virófagos/aislamiento & purificación , Virófagos/ultraestructura
11.
Microbes Environ ; 34(3): 334-339, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31378760

RESUMEN

Giant viruses of 'Megaviridae' have the ability to widely disperse around the globe. We herein examined 'Megaviridae' communities in four distinct aquatic environments (coastal and offshore seawater, brackish water, and hot spring freshwater), which are distantly located from each other (between 74 and 1,765 km), using a meta-barcoding method. We identified between 593 and 3,627 OTUs in each sample. Some OTUs were detected in all five samples tested as well as in many of the Tara Oceans metagenomes, suggesting the existence of viruses of this family in a wide range of habitats and the ability to circulate on the planet.


Asunto(s)
Ecosistema , Virus Gigantes/fisiología , Microbiología del Agua , ADN Polimerasa Dirigida por ADN/genética , Agua Dulce/virología , Geografía , Virus Gigantes/clasificación , Virus Gigantes/genética , Virus Gigantes/aislamiento & purificación , Metagenoma , Filogenia , Agua de Mar/virología , Proteínas Virales/genética
12.
Commun Biol ; 2: 216, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31240254

RESUMEN

The race to discover and isolate giant viruses began 15 years ago. Metagenomics is counterbalancing coculture, with the detection of giant virus genomes becoming faster as sequencing technologies develop. Since the discovery of giant viruses, many efforts have been made to improve methods for coculturing amebas and giant viruses, which remains the key engine of isolation of these microorganisms. However, these techniques still lack the proper tools for high-speed detection. In this paper, we present advances in the isolation of giant viruses. A new strategy was developed using a high-throughput microscope for real-time monitoring of cocultures using optimized algorithms targeting infected amebas. After validating the strategy, we adapted a new tabletop scanning electron microscope for high-speed identification of giant viruses directly from culture. The speed and isolation rate of this strategy has raised the coculture to almost the same level as sequencing techniques in terms of detection speed and sensitivity.


Asunto(s)
Virus Gigantes/aislamiento & purificación , Acanthamoeba/virología , Fluorescencia , Virus Gigantes/genética , Virus Gigantes/patogenicidad , Microscopía Electrónica de Rastreo , Replicación Viral
13.
Viruses ; 11(4)2019 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-30935049

RESUMEN

The history of giant viruses began in 2003 with the identification of Acanthamoeba polyphaga mimivirus. Since then, giant viruses of amoeba enlightened an unknown part of the viral world, and every discovery and characterization of a new giant virus modifies our perception of the virosphere. This notably includes their exceptional virion sizes from 200 nm to 2 µm and their genomic complexity with length, number of genes, and functions such as translational components never seen before. Even more surprising, Mimivirus possesses a unique mobilome composed of virophages, transpovirons, and a defense system against virophages named Mimivirus virophage resistance element (MIMIVIRE). From the discovery and isolation of new giant viruses to their possible roles in humans, this review shows the active contribution of the University Hospital Institute (IHU) Mediterranee Infection to the growing knowledge of the giant viruses' field.


Asunto(s)
Amoeba/virología , Investigación Biomédica/tendencias , Virus Gigantes/aislamiento & purificación , Virología/tendencias , Virus Gigantes/clasificación , Virus Gigantes/genética , Virus Gigantes/ultraestructura , Interacciones Microbiota-Huesped
14.
mBio ; 10(2)2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837339

RESUMEN

The nucleocytoplasmic large DNA viruses (NCLDV) of eukaryotes (proposed order, "Megavirales") include the families Poxviridae, Asfarviridae, Iridoviridae, Ascoviridae, Phycodnaviridae, Marseilleviridae, and Mimiviridae, as well as still unclassified pithoviruses, pandoraviruses, molliviruses, and faustoviruses. Several of these virus groups include giant viruses, with genome and particle sizes exceeding those of many bacterial and archaeal cells. We explored the diversity of the NCLDV in deep sea sediments from the Loki's Castle hydrothermal vent area. Using metagenomics, we reconstructed 23 high-quality genomic bins of novel NCLDV, 15 of which are related to pithoviruses, 5 to marseilleviruses, 1 to iridoviruses, and 2 to klosneuviruses. Some of the identified pithovirus-like and marseillevirus-like genomes belong to deep branches in the phylogenetic tree of core NCLDV genes, substantially expanding the diversity and phylogenetic depth of the respective groups. The discovered viruses, including putative giant members of the family Marseilleviridae, have a broad range of apparent genome sizes, in agreement with the multiple, independent origins of gigantism in different branches of the NCLDV. Phylogenomic analysis reaffirms the monophyly of the pithovirus-iridovirus-marseillevirus branch of the NCLDV. Similarly to other giant viruses, the pithovirus-like viruses from Loki's Castle encode translation systems components. Phylogenetic analysis of these genes indicates a greater bacterial contribution than had been detected previously. Genome comparison suggests extensive gene exchange between members of the pithovirus-like viruses and Mimiviridae Further exploration of the genomic diversity of Megavirales in additional sediment samples is expected to yield new insights into the evolution of giant viruses and the composition of the ocean megavirome.IMPORTANCE Genomics and evolution of giant viruses are two of the most vigorously developing areas of virus research. Lately, metagenomics has become the main source of new virus genomes. Here we describe a metagenomic analysis of the genomes of large and giant viruses from deep sea sediments. The assembled new virus genomes substantially expand the known diversity of the nucleocytoplasmic large DNA viruses of eukaryotes. The results support the concept of independent evolution of giant viruses from smaller ancestors in different virus branches.


Asunto(s)
ADN Viral/genética , Variación Genética , Genoma Viral , Sedimentos Geológicos/virología , Virus Gigantes/clasificación , Virus Gigantes/aislamiento & purificación , Océano Atlántico , ADN Viral/química , Virus Gigantes/genética , Respiraderos Hidrotermales , Metagenómica , Filogenia , Análisis de Secuencia de ADN
15.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541841

RESUMEN

Giant viruses are complex members of the virosphere, exhibiting outstanding structural and genomic features. Among these viruses, the pandoraviruses are some of the most intriguing members, exhibiting giant particles and genomes presenting at up to 2.5 Mb, with many genes having no known function. In this work, we analyzed, by virological and microscopic methods, the replication cycle steps of three new pandoravirus isolates from samples collected in different regions of Brazil. Our data indicate that all analyzed pandoravirus isolates can deeply modify the Acanthamoeba cytoplasmic environment, recruiting mitochondria and membranes into and around the electron-lucent viral factories. We also observed that the viral factories start forming before the complete degradation of the cellular nucleus. Various patterns of pandoravirus particle morphogenesis were observed, and the assembly of the particles seemed to be started either by the apex or by the opposite side. On the basis of the counting of viral particles during the infection time course, we observed that pandoravirus particles could undergo exocytosis after their morphogenesis in a process that involved intense recruitment of membranes that wrapped the just-formed particles. The treatment of infected cells with brefeldin affected particle exocytosis in two of the three analyzed strains, indicating biological variability among isolates. Despite such particle exocytosis, the lysis of host cells also contributed to viral release. This work reinforces knowledge of and reveals important steps in the replication cycle of pandoraviruses.IMPORTANCE The emerging Pandoraviridae family is composed of some of the most complex viruses known to date. Only a few pandoravirus isolates have been described until now, and many aspects of their life cycle remain to be elucidated. A comprehensive description of the replication cycle is pivotal to a better understanding of the biology of the virus. For this report, we describe new pandoraviruses and used different methods to better characterize the steps of the replication cycle of this new group of viruses. Our results provide new information about the diversity and biology of these giant viruses.


Asunto(s)
Acanthamoeba castellanii/virología , Virus ADN/genética , Liberación del Virus/fisiología , Replicación Viral/fisiología , Brasil , Virus ADN/aislamiento & purificación , Genoma Viral/genética , Virus Gigantes/genética , Virus Gigantes/aislamiento & purificación
16.
Nat Commun ; 9(1): 4881, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451857

RESUMEN

Known giant virus diversity is currently skewed towards viruses isolated from aquatic environments and cultivated in the laboratory. Here, we employ cultivation-independent metagenomics and mini-metagenomics on soils from the Harvard Forest, leading to the discovery of 16 novel giant viruses, chiefly recovered by mini-metagenomics. The candidate viruses greatly expand phylogenetic diversity of known giant viruses and either represented novel lineages or are affiliated with klosneuviruses, Cafeteria roenbergensis virus or tupanviruses. One assembled genome with a size of 2.4 Mb represents the largest currently known viral genome in the Mimiviridae, and others encode up to 80% orphan genes. In addition, we find more than 240 major capsid proteins encoded on unbinned metagenome fragments, further indicating that giant viruses are underexplored in soil ecosystems. The fact that most of these novel viruses evaded detection in bulk metagenomes suggests that mini-metagenomics could be a valuable approach to unearth viral giants.


Asunto(s)
Proteínas de la Cápside/genética , Genoma Viral , Virus Gigantes/genética , Mimiviridae/genética , Filogenia , Suelo , Proteínas de la Cápside/metabolismo , Ecosistema , Expresión Génica , Tamaño del Genoma , Virus Gigantes/clasificación , Virus Gigantes/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Metagenómica/métodos , Mimiviridae/clasificación , Mimiviridae/aislamiento & purificación
17.
PLoS One ; 13(9): e0203282, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30231047

RESUMEN

Most known giant viruses, i.e., viruses producing giant virions, parasitize amoebae and other unicellular eukaryotes. Although they vary in the level of dependence on host nuclear functions, their virions self-assemble in the host cell's cytoplasm. Here we report the discovery of a new prototype of giant virus infecting epidermal cells of the marine arrow worm Adhesisagitta hispida. Its 1.25 µm-long virions self-assemble and accumulate in the host cell's nucleus. Conventional transmission electron microscopy reveals that the virions have a unique bipartite structure. An ovoid nucleocapsid, situated in a broad "head" end of the virion is surrounded by a thin envelope. The latter extends away from the head to form a voluminous conical "tail" filled with electron-dense extracapsidular material. The 31nm-thick capsid wall has a distinctive substructure resulting from a patterned arrangement of subunits; it bears no ultrastructural resemblance to the virion walls of other known giant viruses. The envelope self-assembles coincident with the capsid and remotely from all host membranes. We postulate that transmission to new hosts occurs by rupture of protruding virion-filled nuclei when infected arrow worms mate. Future genomic work is needed to determine the phylogenetic position of this new virus, which we have provisionally named Meelsvirus.


Asunto(s)
Virus Gigantes/ultraestructura , Animales , Núcleo Celular/ultraestructura , Núcleo Celular/virología , Virus Gigantes/aislamiento & purificación , Virus Gigantes/patogenicidad , Interacciones Microbiota-Huesped , Microscopía Electrónica de Transmisión , Filogenia , Virión/ultraestructura , Ensamble de Virus , Zooplancton/ultraestructura , Zooplancton/virología
18.
Virus Res ; 255: 36-38, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29981362

RESUMEN

Metagenomic binning reconstructions represent an emergent powerful tool to discover novel microbial genomes and explore the diversity in microbial communities. This method is sometimes coupled with automatic pipeline to perform automatic annotations. Nevertheless, we found a publish Alphaproteobacteria in public database that containing 20 contigs identified as a bacterium that were actually a novel giant viruses close to Aureococcus anophagefferens virus. This virus was completely misidentified by automatic pipeline and missed by control program and finally concern near to 20% of this 2,4 Mb.


Asunto(s)
Virus Gigantes/genética , Virus Gigantes/aislamiento & purificación , Metagenómica/métodos , Anotación de Secuencia Molecular/métodos , Biología Computacional , Virus Gigantes/clasificación , Análisis de Secuencia de ADN , Proteínas Virales/genética
19.
Virology ; 518: 423-433, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29649682

RESUMEN

The family Mimiviridae contains uncommonly large viruses, many of which were isolated using a free-living amoeba as a host. Although the genomes of these and other mimivirids that infect marine heterokont and haptophyte protists have now been sequenced, there has yet to be a genomic investigation of a mimivirid that infects a member of the Viridiplantae lineage (green algae and land plants). Here we characterize the 668-kilobase complete genome of TetV-1, a mimivirid that infects the cosmopolitan green alga Tetraselmis (Chlorodendrophyceae). The analysis revealed genes not previously seen in viruses, such as the mannitol metabolism enzyme mannitol 1-phosphate dehydrogenase, the saccharide degradation enzyme alpha-galactosidase, and the key fermentation genes pyruvate formate-lyase and pyruvate formate-lyase activating enzyme. The TetV genome is the largest sequenced to date for a virus that infects a photosynthetic organism, and its genes reveal unprecedented mechanisms by which viruses manipulate their host's metabolism.


Asunto(s)
Chlorophyta/virología , Genes Virales , Virus Gigantes/genética , Virus Gigantes/aislamiento & purificación , Redes y Vías Metabólicas/genética , Chlorophyta/metabolismo , Fermentación , Genoma Viral , Anotación de Secuencia Molecular , Virus de Plantas , Análisis de Secuencia de ADN
20.
Elife ; 72018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29582753

RESUMEN

Giant viruses are ecologically important players in aquatic ecosystems that have challenged concepts of what constitutes a virus. Herein, we present the giant Bodo saltans virus (BsV), the first characterized representative of the most abundant group of giant viruses in ocean metagenomes, and the first isolate of a klosneuvirus, a subgroup of the Mimiviridae proposed from metagenomic data. BsV infects an ecologically important microzooplankton, the kinetoplastid Bodo saltans. Its 1.39 Mb genome encodes 1227 predicted ORFs, including a complex replication machinery. Yet, much of its translational apparatus has been lost, including all tRNAs. Essential genes are invaded by homing endonuclease-encoding self-splicing introns that may defend against competing viruses. Putative anti-host factors show extensive gene duplication via a genomic accordion indicating an ongoing evolutionary arms race and highlighting the rapid evolution and genomic plasticity that has led to genome gigantism and the enigma that is giant viruses.


Asunto(s)
Virus Gigantes/aislamiento & purificación , Kinetoplastida/virología , Mimiviridae/aislamiento & purificación , Agua de Mar/virología , Evolución Molecular , Genes Virales , Genoma Viral , Virus Gigantes/clasificación , Virus Gigantes/genética , Interacciones Huésped-Patógeno , Metagenómica , Mimiviridae/clasificación , Mimiviridae/genética , Océanos y Mares , Sistemas de Lectura Abierta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...